Spécifications et tests

1 Prototypage et typage

Prototyper une fonction, c'est :

*]la nommer,

* définir ses parameétres,

* le type de variables utilisées,

* le type de la valeur retournée par la fonction.
Il n’est pas nécessaire de coder la fonction pour la prototyper. On peut utiliser le mot clé pass pour laisser un
corps de fonction vide.

def puissance(facteur, exposant):
pass

Il est de bonne pratique de nommer explicitement les fonctions et les parametres, on doit comprendre leurs
utilités juste avec leur nom. Les deux fonctions suivantes réalisent le méme traitement, une est bien nommée.

def a(b, c): def puissance(facteur, exposant):
d =1 resultat = 1
for _ in range(c): for _ in range(exposant):
d=d?*b resultat = resultat * facteur
return d return resultat

Dans certains langages de programmation, une variable est définie avec un type qui n’est plus modifiable
ensuite, sous peine d’erreur a la compilation. On appelle cela le typage statique.

// Ce code est écrit en langage C
int main()

{
int a = 0; // La variable a est définie comme un entier
char a = 'Z'; // 0On essaie de la redéfinir en caractere
}
error: conflicting types for ‘a’; have ‘char’
| char a = 'Z';

| A
note: previous definition of ‘a’ with type ‘int’

En Python, le typage est dynamique. Une variable posséde un type (récupérable avec la fonction type) qui

n’a pas besoin d’étre explicité mais est vérifié lors de 1'exécution d'opérations sur cette variable. Ce type est
modifiable pendant I’exécution du code.

0On n'explicite jamais le type, Python le trouve de lui-méme
a = 123

print(type(a)) # Type int

a = "Super" # On change le type de a

print(type(a)) # Type str

Il est quand méme possible de spécifier un type aux variables, aux parameétres et aux valeurs retournées par les
fonctions. On appelle cela le typage (typing en anglais).

Voici un exemple de la méme fonction sans et avec typage. Elle prend en parametres deux nombres entiers et
renvoie un nombre décimal. Chaque parametre a son ou ses types de précisés au format nom : typel|
type2]|... ,etletype de retour de la fonction aussi avec -> type.

sans typage # avec typage
def moyenne2(nil, n2): def moyenne2(nl1 : int, n2 : int) -> float:
return (n1 + n2) / 2 return (n1 + n2) / 2

Ce typage est non-contraignant, c’est a dire que rien ne nous oblige a le respecter en utilisant la fonction, cela
Ne provoque aucune erreur.

print(moyenne2(12, 14)) # respect du typage, renvoie 13.0
print(moyenne2(12.5, 14.5)) # non respect du typage, renvoie 13.5

Néanmoins, la définition et type et son respect permettent d’obtenir un code plus robuste, avec moins de bugs.
Pour s’assurer du respect des types, il existe deux solutions :
» Vérifier les types des parameétres avec du code, avec des conditions ou des assertions (voir plus bas) ;
* Avec un type checker (hors programme), un outils de vérification de code. mypy est un type checker
statique, c’est a dire qu’il lit (sans exécuter) le code pour vérifier qu’il n’y a pas d’erreur de non respect
des types.

Vérification des types fait avec une condition
def moyenne2(nl1 : int, n2 : int) -> float:
if type(nl) != int or type(n2) != int:
print("Les parametres doivent étre entiers.")
return -1
return (n1 + n2) / 2

print(moyenne2(12.5, 14.5)) # Les paramétres doivent étre entiers.

Voici une liste de quelques types fournis par Python : int, float, str, bool, 1list, tuple

2 Documentation

En plus du prototype et du typage d’une fonction, on souhaite généralement décrire le fonctionnement de notre
fonction et comment 1’utiliser correctement. On appelle cela documenter son code.

On peut déja faire cela avec de simples commentaires dans le code quand celui-ci reste a petite échelle, mais il
existe un outils plus puissant et plus adapté aux gros projets: la chaine de documentation (docstring en
anglais).

La chaine de documentation s’écrit dans le bloc de la fonction, juste en dessous de sa définition, en utilisant 3
guillemets doubles : """ ... """,

def somme(a : int|float, b : int|float) -> int|float:
""" Calcule a + b, avec a et b des nombres entiers ou décimaux.

return a + b

On peut récupérer la chaine de documentation en utilisant la fonction he 1p () dans la console.

help(somme)
Help on function somme in module __main__:

somme(a: int | float, b: int | float) -> int | float
Calcule a + b, avec a et b des nombres entiers ou décimaux.

Python fournit déja une documentation pour ses fonctions et donne en plus des informations sur les parameétres
et les erreurs qui peuvent étre levées.

help(list.pop)
Help on method_descriptor:

pop(self, index=-1, /)
Remove and return item at index (default last).

Raises IndexError if 1list is empty or index is out of range.

Cette chaine de documentation peut aussi contenir du code de tests (voir plus bas).
A I’aide d’outils annexes, il est possibles de générer toute la documentation d’un projet sous la forme d’un
document imprimable ou d’un site web.

3 Jeux de tests

Il est indispensable de tester son code aprés 1’avoir écrit pour s’assurer qu’il fonctionne, mais certaines
méthodes de développement, comme le TDD (Test driven development) préconisent méme que I’on écrive un
code de test avant d’avoir coder une fonctionnalité.

L’ajout d’une fonctionnalité avec la méthode de développement logiciel TDD se déroule ainsi :

1. On commence par écrire le test.

2. Le test échoue (forcément, rien n'est encore codé !)

3. On écrit le code pour que le test soit validé.

4. On améliore (si possible) ce code tout en vérifiant que le test continue a étre valide.
On répete ces étapes pour chaque nouvelle fonctionnalité, en relancant les précédents tests pour s’assurer de ne
rien avoir involontaire cassé avec du nouveau code. On appelle cela des tests de non-régression.

Les tests ne prouveront jamais qu’un code ne contient pas d’erreurs, ils sont néanmoins utiles et il est
important de bien les penser pour qu’ils couvrent un maximum de cas possibles. Par exemple, si on prend le cas
d’une fonction qui recherche la valeur maximale dans une liste d’entiers, des cas de tests possibles seraient :

* On passe une liste vide.

* On passe une liste avec des entiers, des entiers positifs, négatifs, les deux...

* On passe une liste avec le maximum a différentes positions, une fois ou plusieurs fois...

Les assertions sont des tests utilisés pour prévenir des situations qui seraient logiquement impossibles. Si une
de ces situations est détectée, alors le programme n’est pas siir ou est mal codé et il est arrété. De maniere plus
concrete, il existe deux cas possibles :
* On veut repérer si des données (souvent des parameétres d'une fonction) sont susceptibles de créer des
problémes, ou sont hors spécification : on appelle cela des préconditions sur les arguments.
* On veut repérer si les fonctions que 1’on a écrit se comportent correctement et renvoie bien les résultats
attendus : on appelle cela des postconditions sur les résultats.

On utilise le mot clé assert avec la syntaxe : assert test, message_si_test_vaut_False

def somme(a : int|float, b : int|float) -> int|float:
""" Calcule a + b, avec a et b des nombres entiers ou décimaux.
tests les préconditions
assert type(a) == int or type(a) == float , "a doit étre un nombre."
assert type(b) == int or type(b) == float , "b doit étre un nombre."

return a + b
tests les postconditions

assert somme(1, 1) ==
assert somme(-0.125, -0.5) == -0.625

Les assertion nous permettent de remplacer un test avec une conditionnelle pour détecter des erreurs.
Elles offrent d’autres avantages (hors programme):
* On peut choisir de les désactiver lors de 1’exécution du programme pour gagner en performance.
* Il est possible de gérer les erreurs par le mécanisme try except, qui permet de lever des exceptions.

Il est possible de les intégrer des tests dans la chaine de documentation et de les exécuter grace au module
doctest et sa fonction testmod. Dans la chaine de documentation, les appels a la fonction sont précédées
de >>> et le résultat attendu placé a la ligne qui suit.

def somme(a : int|float, b : int|float) -> int|float:
""" Calcule a + b, avec a et b des nombres entiers ou décimaux.
>>> somme(1, 1)
2
>>> somme(-0.125, -0.5)
-0.625

return a + b

>>> import doctest
>>> doctest.testmod()
TestResults(failed=0, attempted=2)

On peut aussi demander a la fonction d’afficher en détail les tests effectués avec 1’appel
doctest.testmod(verbose=True).

>>> jmport doctest
>>> doctest.testmod(verbose=True)
Trying:

somme(1, 1)
Expecting:

2
ok
Trying:

somme(-0.125, -0.5)
Expecting:

-0.625
ok
1 items had no tests:

__main__
1 items passed all tests:

2 tests in __main__.somme

2 tests in 2 items.
2 passed and 0 failed.
Test passed.
TestResults(failed=0, attempted=2)

