
Programmation dynamique

Exercice 2 : Nombres de chemins dans une grille

Pour une grille de taille n×m donnée, combien de chemins mènent du coin supérieur gauche au coin inférieur
droit, en se déplaçant uniquement le long des traits horizontaux vers la droite et le long des traits verticaux vers
le bas ?

1 Relation de récurrence

On a vu dans l'introduction du cours que l'on peut calculer ce nombre en utilisant le nombre de chemins pour
des grilles plus petites. Dans l'exemple au-dessus on a indiqué le nombre de chemin pour arriver à chaque
intersection (en partant du coin supérieur gauche).

On rappelle que chaque nombre est la somme du nombre situé à gauche et du nombre situé au-dessus.
Autrement dit, on a la relation de récurrence suivante :

nb_chemin (n,m)={1 si n=0 ou m=0
nb_chemin(n−1 , m) + nb_chemin(n ,m−1) sinon

2 Version récursive naïve

La relation de récurrence permet d'écrire la fonction récursive naïve suivante :

def nb_chemins_recursif(n, m):
 if n == 0 or m == 0:
 return 1
 else:
 return nb_chemins_recursif(n-1, m) + nb_chemins_recursif(n, m-1)

print(nb_chemins_recursif(3, 2))
print(nb_chemins_recursif(10, 10))

Vous pouvez constater que pour des valeurs un peu plus élevée, le calcul prend plusieurs secondes et si on
augmente encore les valeurs de n et m, le calcul ne termine pas en un temps raisonnable voire jamais.

import time
t1 = time.time()
nb_chemins = nb_chemins_recursif(13, 13)
t2 = time.time()
print(nb_chemins)
print("temps (en s.) : ", t2 - t1)

3 Objectif

Utiliser la programmation dynamique pour améliorer l'efficacité de l'algorithme. Vous écrirez une version
récursive avec mémoïsation (approche descendante) puis une version itérative avec mémoïsation (approche
ascendante).

4 Version récursive avec mémoïsation (approche
descendante)

On va utiliser un tableau memo pour mémoriser les résultats des calculs afin de ne pas les effectuer deux fois.
La liste memo est de taille (n+1)×(m+1) et l'élément memo[i][j] représente le nombre de chemins sur
une grille i×j.
On peut créer la liste memo avec uniquement des 1 au départ, puisque c'est la valeur minimale des memo[i]
[j].

Question 1 : Écrivez
• la fonction récursive nb_chemins_recursif_memo(n, m, memo) qui renvoie le nombre de

chemins sur une grille de taille n×m en mettant à jour la liste memo pour stocker les résultats
intermédiaires calculés (afin de ne pas les calculer plusieurs fois lors des appels récursifs)

• la fonction d'interface nb_chemins_recursif_memoise(n, m) qui renvoie le nombre de
chemins d'une grille n×m (il suffit de lancer le premier appel de la fonction
nb_chemins_recursif_memo sur une liste ne contenant que des 1).

5 Version itérative (approche ascendante)

On peut procéder de manière classique en trois étapes (comme vu dans les autres exemples).
On va utiliser un tableau grille de taille (n+1)×(m+1) dans lequel grille[i][j] est le nombre de
chemins sur une grille de taille i×j.
On peut commencer par créer la liste grille avec uniquement des 1, ce qui permet d'initialiser correctement
la première ligne et la première colonne. Ensuite, avec deux boucles for imbriquées on peut calculer les valeurs
grille[i][j] en progressant dans le sens des indices croissants et en utilisant la relation de récurrence.

Question 2 : Écrivez une fonction nb_chemins_iteratif_ascendant(n, m) qui renvoie le nombre
de chemins d'une grille de taille n×m en construisant et complétant la liste grille au fur et à mesure.

	Exercice 2 : Nombres de chemins dans une grille
	1 Relation de récurrence
	2 Version récursive naïve
	3 Objectif
	4 Version récursive avec mémoïsation (approche descendante)
	5 Version itérative (approche ascendante)

