Nom, prénom :

Evaluation NSI — Pile File

On crée une classe Pile qui modélise la structure d'une pile d'entiers. Le constructeur de la classe
initialise une pile vide. La définition de cette classe sans I’implémentation de ses méthodes est donnée
ci-dessous.

class Pile:
def __init_ (self):
"""Tnitialise la pile comme une pile vide."""

def est_vide(self):
"""Renvoie True si la liste est vide, False sinon."""

def empiler(self, e):
"""Ajoute 1'elément e sur le sommet de la pile, ne renvoie
rlen . mon

def depiler(self):
"""Retire 1'élément au sommet de la pile et le renvoie."""

def nb_elements(self):
"""Renvoie le nombre d'éléments de la pile. """

def afficher(self):
"""Affiche de gauche a droite les éléments de la pile, du
fond de la pile vers son sommet. Le sommet est alors
1’élément affiché le plus a droite. Les éléments sont
séparés par une virgule. Si la pile est vide la méthode
affiche « pile vide »."""

Seules les méthodes de la classe ci-dessus doivent étre utilisées pour manipuler les objets Pile.

Question 1 :

a) Ecrire une suite d’instructions permettant de créer une instance de la classe Pile affectée a une
variable pilel contenant les éléments 7, 5 et 2 insérés dans cet ordre.

Ainsi, a I’issue de ces instructions, I’instruction pilel.afficher () produit I’affichage : 7, 5, 2.

pilel = Pile()

pilel.empiler(7)
pilel.empiler(5)
pilel.empiler(2)

b) Donner I’affichage produit apreés 1’exécution des instructions suivantes.

elementl = pilel.depiler() # 2 # fond - 7 - 5 - sommet

pilel.empiler(5) # fond - 7 - 5 - 5 - sommet
pilel.empiler(elementl) # fond - 7 - 5 -5 - 2 - sommet
pilel.afficher() # 7, 5, 5, 2

Question 2 :

On donne la fonction mystere suivante :

def mystere(pile, element):
pile2 = Pile()
nb_elements = pile.nb_elements()
for 1 in range(nb_elements):
elem = pile.depiler()
pile2.empiler(elem)
if elem == element:
return pile2
return pile2

a) Dans chacun des quatre cas suivants, quel est I’affichage obtenu dans la console ?

«Casn°l >>>pile.afficher()

7, 5, 2, 3

>>>mystere(pile, 2).afficher()
3, 2

«Casn®°2 >>>pile.afficher()

7, 5, 2, 3

>>>mystere(pile, 9).afficher()
3, 2, 5, 7

«Casn°3 >>>pile.afficher()

7, 5, 2, 3

>>>mystere(pile, 3).afficher()
3

«Casn°4 >>>pile.est_vide()

True

>>>mystere(pile, 3).afficher()
pile vide

b) Expliquer ce que permet d’obtenir la fonction mystere.

Dépile dans une nouvelle pile les éléments de pile jusqu’a que celle-
cli soit vide et retourne la nouvelle pile. Si un élément dépilé est
eégal a element, 1la fonction s’arréte prématurément et renvoie la
nouvelle pile contenant les éléments dépilés jusqu’a présent.

Question 3 :

Ecrire une fonction etendre(pilel, pile2) quiprend en arguments deux objets Pile appelés
pilel et pile2 et qui modifie pilel en lui ajoutant les éléments de pile2 rangés dans l'ordre
inverse. Cette fonction ne renvoie rien.

On donne ci-dessous les résultats attendus pour certaines instructions.

>>>pilel.afficher()

7, 5 2, 3
>>>pile2.afficher()

1, 3, 4
>>>etendre(pilel, pile2)
>>>pilel.afficher()

7, 5, 2, 3, 4, 3, 1
>>>pile2.est_vide()

True

Boucle for reprise du code de la fonction mystere
def etendre(pilel, pile2):
nb_elements = pile2.nb_elements()
for i in range(nb_elements):
pilel.empiler(pile2.depiler())

Ou avec une boucle while ...
def etendre(pilel, pile2):
while not pile2.est_vide():
pilel.empiler(pile2.depiler())

Question 4 :

Ecrire une fonction supprime_toutes_occurences(pile, element) qui prend en
arguments un objet Pile appelé pile et un élément e Lement et supprime tous les éléments
element de pile.

On donne ci-dessous les résultats attendus pour certaines instructions.

>>>pile.afficher()

7, 5, 2, 3,5
>>>supprime_toutes_occurences (pile, 5)
>>>pile.afficher()

7, 2, 3

On reprend quasiment tout le code de la fonction mystere ...
def supprime_toutes_occurences(pile, element):
pile2 = Pile()
nb_elements = pile.nb_elements()
for 1 in range(nb_elements):
elem = pile.depiler()
if elem !'= element:
pile2.empiler(elem)
etendre(pile, pile2) # On réutilise la fonction etendre

