
_corr0 = [4, 2, 1, 4, 3, 5, 3, 3, 2, 1, 1, 3, 3, 5, 4, 4, 5, 1, 3, 3]
_copTM = [4, 1, 5, 4, 3, 3, 1, 4, 5, 3, 5, 1, 5, 5, 5, 1, 3, 3, 3, 3]
_corrTM = [True, False, False, True, True, False, False, False,
False, False, False, False, False, True, False, False, False, False,
True, True]

Ex 1 : plusieurs versions

def corrige(copTM, corr0):
 corrTM = []
 for i in range(len(copTM)):
 corrTM.append(copTM[i] == corr0[i])
 return corrTM

def corrige(copTM, corr0):
 return [copTM[i] == corr0[i] for i in range(len(copTM))]

print("Ex1",corrige(_copTM, _corr0))

Ex 2

def note(copTM, corr0):
 corrTM = corrige(copTM, corr0)
 n = 0
 for b in corrTM:
 if b :
 n += 1
 return n

print("Ex2", note(_copTM, _corr0))

Ex 3

_p1 = {('Tom', 'Matt'): [4, 1, 5, 4, 3, 3, 1, 4, 5, 3, 5, 1, 5, 5, 5, 1,
3, 3, 3, 3],
('Lambert', 'Ginne'): [2, 4, 2, 2, 1, 2, 4, 2, 2, 5, 1, 2, 5, 5, 3, 1, 1,
1, 4, 4],
('Carl', 'Roth'): [5, 4, 4, 2, 1, 4, 5, 1, 5, 2, 2, 3, 2, 3, 3, 5, 2, 2,
3, 4],
('Kurt', 'Jett'): [2, 5, 5, 3, 4, 1, 5, 3, 2, 3, 1, 3, 4, 1, 3, 1, 3, 2,
4, 4],
('Ayet', 'Finzerb'): [4, 3, 5, 3, 2, 1, 2, 1, 2, 4, 5, 5, 1, 4, 1, 5, 4,
2, 3, 4]}

def notes_paquet(p1, corr0):
 d = {}
 for key in p1:
 d[key] = note(p1[key], corr0)
 return d

print("Ex3", notes_paquet(_p1, _corr0))

Ex 4 : Interdit, les clés ne doivent pas être mutable. (leur valeur ne
doivent pas pouvoir changer)

Ex 5 : On pourra utiliser un identifiant unique par candidat, comme un
numéro de candidat

Ex 6: ((('Tom','Matt'), 6), (('Lambert', 'Ginne'), 4), (('Kurt',
'Jett'), 4), {('Carl', 'Roth'): 2, ('Ayet', 'Finzerb'): 3})

Ex 7: Il retourne le noms des trois meilleurs élèves, ceux qui ont les
meilleurs notes (1er a, 2nd b, 3ème c) et le reste des élèves dans d

Ex 8: d sera toujours un dictionnaire vide, les 3 entrés seront triées
par ordre de note décroissante

Ex 9

def enigme(notes) :
 a = None
 b = None
 c = None
 d = {}
 for nom in notes :
 tmp = c
 if a == None or notes[nom] > a[1] :
 c = b
 b = a
 a = (nom, notes[nom])
 elif b == None or notes[nom] > b[1] :
 c = b
 b = (nom, notes[nom])
 elif c == None or notes[nom] > c[1] :
 c = (nom, notes[nom])
 else :
 d[nom] = notes[nom]
 if tmp != c and tmp != None :
 d[tmp[0]] = tmp[1]
 return (a, b, c, d)

def classement(d):
 l = []
 e = enigme(d)
 if e[0] is not None : l.append(e[0])
 if e[1] is not None : l.append(e[1])
 if e[2] is not None : l.append(e[2])
 while len(e[3]) != 0:
 e = enigme(e[3])
 if e[0] is not None : l.append(e[0])
 if e[1] is not None : l.append(e[1])
 if e[2] is not None : l.append(e[2])
 return l

print("Ex 9",classement({('Tom', 'Matt'): 6, ('Lambert', 'Ginne'): 4,
('Carl', 'Roth'): 2, ('Kurt', 'Jett'): 4, ('Ayet', 'Finzerb'): 3}))

Ex 10

l = [True, False, False, False, False, False, False]

def renote_express2(copcorr) :
 gauche = 0
 droite = len(copcorr) - 1
 while droite - gauche > 1 :
 milieu = (gauche + droite)//2
 if copcorr[milieu] :
 gauche = milieu + 1
 else :
 droite = milieu - 1
 print(gauche, droite)
 if copcorr[gauche] :
 return gauche + 1
 else :
 return gauche

print("Ex10", renote_express2(l))

Ex 11

renote_express = O(n)
renote_express2 = O(log(n))

Ex 12

Mal écrite

