_ 3, 4, 4,
_copTM 1, 5, 1,
_corrTM = [True False F ls
False, False, False, False,

True, True]

|_|u

5, 3, 2, 1, 1, 3, 5, 5,
3, 4, 5, 3, 5, 5, 5, 3, 3
a True True, False False False

3,
1,
e,
False, True, False, False, False, False,

Ex 1 : plusieurs versions
def corrige(copTM, corr0Q):
corrT™M = []
for i in range(len(copTM)):
corrTM.append(copTM[i] == corr0@[i])
return corrTM

def corrige(copTM, corr0Q):
return [copTM[i] == corr@O[i] for i in range(len(copTM))]

print("Ex1",corrige(_copTM, _corr0))

Ex 2

def note(copTM, corr0):
corrTM = corrige(copTM, corrQ)

n=2=o0
for b in corrTM:
if b
n += 1
return n

print("Ex2", note(_copTM, _corr0))

EX 3

_p1 = {('Tom', 'Matt'): [4, 1, 5, 4, 3, 3, 1, 4, 5, 3, 5, 1, 5, 5, 5, 1,

3, 3, 3, 3],

('Lambert', 'Ginne'): [2, 4, 2, 2, 1, 2, 4, 2, 2, 5, 1, 2, 5, 5, 3, 1, 1,
1! 4! 4]!

('Carl', 'Roth'): [5, 4, 4, 2, 1, 4, 5, 1, 5, 2, 2, 3, 2, 3, 3, 5, 2, 2,

3/ 4]/

('Kurt', 'Jett'): [2, 5, 5, 3, 4,1, 5, 3, 2, 3,1, 3, 4, 1, 3, 1, 3, 2,

4, 4],

('Ayet', 'Finzerb'): [4, 3, 5, 3, 2, 1, 2, 1, 2, 4, 5, 5, 1, 4, 1, 5, 4,

2, 3, 4]}

def notes_paquet(pl, corr0Q):
= {}
for key in p1i:
d[key] = note(pl[key], corr0)
return d

print("Ex3", notes_paquet(_pl, _corr0))

Ex 4 : Interdit, les clés ne doivent pas étre mutable. (leur valeur ne
doivent pas pouvoir changer)

Ex 5 : On pourra utiliser un identifiant unique par candidat, comme un
numéro de candidat

Ex 6: ((('Tom', 'Matt'), 6), (('Lambert', 'Ginne'), 4), (('Kurt',
'Jett'), 4), {('Carl', 'Roth'): 2, ('Ayet', 'Finzerb'): 3})

Ex 7: Il retourne le noms des trois meilleurs éléves, ceux qui ont les
meilleurs notes (ler a, 2nd b, 3éme c) et le reste des éleves dans d

Ex 8: d sera toujours un dictionnaire vide, les 3 entrés seront triées
par ordre de note décroissante

EX 9
def enigme(notes)
a = None
b = None
c = None
d = {}
for nom in notes
tmp = ¢
if a == None or notes[nom] > a[1]
c=Db
b =a
a = (nom, notes[nom])
elif b == None or notes[nom] > b[1]
c=Db
b = (nom, notes[nom])
elif ¢ == None or notes[nom] > c[1]
c = (nom, notes[nom])
else :
d[nom] = notes[nom]
if tmp != c and tmp != None :

ditmp[0]] = tmp[1]
return (a, b, c, d)

def classement(d):

L =11

e = enigme(d)

if e[0] 1is not None : Ll.append(e[0Q])

if e[1] is not None : 1l.append(e[1])

if e[2] is not None : l.append(e[2])

while len(e[3]) != 0O:
e = enigme(e[3])
if e[0] is not None : 1l.append(e[0])
if e[1] is not None : l.append(e[1])
if e[2] is not None : 1l.append(e[2])

return 1

print("Ex 9",classement({('Tom', 'Matt'): 6, ('Lambert', 'Ginne'): 4,
('Carl', 'Roth'): 2, ('Kurt', 'Jett'): 4, ('Ayet', 'Finzerb'): 3}))

EX 10

1L = [True, False, False, False, False, False,

def renote_express2(copcorr)
gauche = 0
droite = len(copcorr) - 1
while droite - gauche > 1
milieu = (gauche + droite)//2
if copcorr[milieu]
gauche = milieu + 1
else
droite = milieu - 1
print(gauche, droite)
if copcorr[gauche]
return gauche + 1
else
return gauche

print("Ex10", renote_express2(1l))

Ex 11

renote_express = 0(n)
renote_express2 = 0(log(n))

Ex 12

Mal écrite

False]

