EXERCICE 4 (4 points)

Cet exercice porte sur l'algorithme de tri fusion, qui s’appuie sur la méthode dite de « diviser pour
régner ».

1. a. Quel estl'ordre de grandeur du co(t, en nombre de comparaisons, de I'algorithme de tri
fusion pour une liste de longueur n ?

b. Citer le nom d'un autre algorithme de tri. Donner I'ordre de grandeur de son co(t, en
nombre de comparaisons, pour une liste de longueur n. Comparer ce co(t a celui du tri
fusion. Aucune justification n’est attendue.

L’algorithme de tri fusion utilise deux fonctions moitie gauche etmoitie droite qui prennent
en argument une liste L et renvoient respectivement :

e |a sous-liste de L. formée des éléments d’'indice strictement inférieur a 1en (L) / /2 ;
e la sous-liste de L formée des éléments d’indice supérieur ou égal a 1len (L) //2.

On rappelle que la syntaxe a/ /b désigne la division entiére de a par b.

Par exemple,
>>> L = [3, 5, 2, 7, 1, 9, 0] >>> M = [4, 1, 11, 7]
>>> moitie gauche (L) >>> moitie gauche (M)
[3, 5, 2] [4, 1]
>>> moitie droite (L) >>> moitie droite (M)
[7, 1, 9, 0] [11, 7]

L’algorithme utilise aussi une fonction fusion qui prend en argument deux listes triées 1.1 et
L2 et renvoie une liste L triée et composée des éléments de 1.1 et L2.

On donne ci-dessous le code python d’une fonction récursive tri_fusion qui prend en
argument une liste L et renvoie une nouvelle liste triée formée des éléments de L.

def tri fusion(L):
n = len (L)
if n<=1

return L

print (L)
mg moitie gauche (L)
md = moitie droite (L)
Ll = tri fusion(mg)
L2 = tri_ fusion(md)
return fusion(Ll, L2)

2. Donner la liste des affichages produits par I'appel suivant.

tri fusion(I[7, 4, 2, 1, 8, 5, 6, 3])

Page 10 sur 13



On s’intéresse désormais a différentes fonctions appelées par tri_fusion, a savoir
moitie droite et fusion.

3. Ecrire la fonction moitie droite.
4. On donne ci-dessous une version incompléte de la fonction fusion.

1. def fusion(Ll, L2):

2 L =[]

3 nl = len(L1)

4. n2 = len(L2)

5. il =0

6 i2 =0

7 while i1 < nl or i2 < n2
8. if 11 >= nl:

9. L.append (L2 [i2])
10. i2 = 12 + 1

11. elif i2 >= n2:

12. L.append(L1[il])
13. 11 = 11 + 1

14. else:

15. el = L1[i1]

16. e2 = L2[i2]

17.

18.

19.

20.

21.

22.

23. return L

Dans cette fonction, les entiers i1 et i2 représentent respectivement les indices des
éléments des listes 1.1 et 1.2 que I'on souhaite comparer :

e Si aucun des deux indices n’est valide, la boucle while est interrompue ;
e Si i1 n’estplus un indice valide, on va ajouter a L les éléments de L2 a partir de

I'indice 12 ;

e Sii2 n’estplus un indice valide, on va ajouter a L les éléments de L1 a partir de
lindice i1 ;

e Sinon, le plus petit élément non encore traité est ajouté a L. et on décale l'indice
correspondant.

Ecrire sur la copie les instructions manquantes des lignes 17 & 22 permettant d’'insérer
dans la liste L les éléments des listes L.1 et 1.2 par ordre croissant.

Page 11 sur 13



Exercice 1 (4 points)
Cet exercice traite de programmation, d'algorithmique et de complexité.
On souhaite rechercher dans un tableau les k plus proches voisins d’un objet donné.

On dispose pour cela d’'un tableau t non vide contenant des objets d’'un méme type et
d’'une fonction distance qui renvoie la distance entre deux objets quelconques de ce
type.

Etant donné un objet cible du méme type que ceux du tableau t, on cherche a
déterminer les indices des k éléments du tableau t qui sont les plus proches de cet objet
(c’est-a-dire ceux dont la distance a I'objet cible est la plus petite).

1. On suppose dans cette question que k = 1.
La fonction plus proche voisin(t, cible) ci-dessous prend en argument le
tableau t et I'objet cible. Ecrire sur votre copie uniquement le bloc d'instructions
manquant pour que la fonction renvoie I'indice d'un plus proche voisin de cible.

def plus proche voisin(t, cible)
dmin = distance(t[0], cible)
idx ppv = 0
n = len(t)
for idx in range(l, n)

bloc a écrire

return idx ppv

2. On considere que le colt en temps du bloc manquant est constant. Quelle est la
complexité de la fonction plus proche voisinquandk =17?

Dans la suite, on suppose que k > 1.

3. Une approche naive consiste a parcourir le tableau t pour trouver I'indice de
I'élément le plus proche de cible, puis a recommencer pour trouver I'indice du
deuxiéme élément le plus proche de cible, et ainsi de suite. Cela implique de
parcourir k fois tout le tableau.

Afin de réduire le nombre d’appels a la fonction distance, la stratégie suivante
permet de ne parcourir le tableau t qu’une seule fois. Lors de ce parcours, on
stocke dans une liste kppv, initialement vide, les tuples (idx, d) ou idx est
l'indice d'un k plus proche voisin de cible déja rencontré et d la distance
correspondante, triés dans I'ordre décroissant de leur distance a cible.

La fonction recherche kppv(t, k, cible) ci-aprés renvoie ainsi la liste des
tuples (idx, d) ou idx est l'indice d'un k plus proche voisin de cible dans le
tableau t et d la distance correspondante.

22-NSI1J2AS1 Page 2/12



On admet que la fonction insertion (kppv, idx, d) inséreletuple (idx, 4)
dans la liste kppv de sorte que celle-ci demeure triée dans 'ordre décroissant des
distances.

def recherche kppv(t, k, cible):
kppv = []
n = len(t)
for idx in range(n) :
obj = t[idx]
if len (kppv)<k:
insertion (kppv, idx, distance (obj, cible))
else:
10, d0 = kppv[0]
if distance (obj, cible)<do:
kppv.pop (0) # supprime le ler élément de kppv
insertion (kppv, idx, distance(obj, cible))
return kppv

a. Onremarque qu’il y a plusieurs appels identiques a la fonction
distance (obj,cible). Comment ne faire qu’'un seul appel de cette
fonction ?

b. Expliquer I'intérét de maintenir la liste kppv triée.

c. Ecrire une fonction insertion (kppv, idx, d)quiinsére le
tuple (idx, d) dans la liste kppv préalablement triée en préservant I'ordre
décroissant selon I'élément 4.

On pourra éventuellement utiliser la méthode insert dont la documentation,
fournie par la commande help (1ist.insert), estla suivante :

insert (self, index, object, /)
Insére 1l'objet object avant la position index dans 1'objet
appelant référencé par self.

Exemple d’utilisation de la méthode insert :
>>> liste = [4, 2, 8, 9]
>>> liste.insert (1, 3)
>>> liste
(4, 3, 2, 8, 9]

22-NSI1J2AS1 Page 3/12



