Exercice 4

1)
a) 0(nlog(n))
b) Tri selection/insertion/bulle. Cout 0(n2)

2)

[7I 4/ 2/ 1/ 8/ 5/ 6/ 3]
[7I 4/ 2/ 1]

[7, 4]

[2, 1]

[8I 5/ 6/ 3]

[8, 5]

[6, 3]

3) 4)
def moitie_droite(L):
return L[len(L)//2:]

def moitie_gauche(L):
return L[:len(L)//2]

def fusion(L1l, L2):

L =[]

nl = len(L1)

n2 = len(L2)

i1 =0

i2 =0

while i1 < nl1 or i2 < n2:

if i1 >= n1:

L.append(L2[12])
i2 =12 + 1

elif i2 >= n2:
L.append(L1[i1])

il = i1 + 1
else:

el = L1[i1]

e2 = L2[1i2]

if el < e2:
L.append(el)

il = i1 + 1
else:
L.append(e2)
i2 = i2 + 1
return L

def tri_fusion(L):
n = len(L)
if n <= 1:
return L
print(L)
mg = moitie_gauche(L)

md = moitie_droite(L)
L1 = tri_fusion(mg)
L2 = tri_fusion(md)

return fusion(L1, L2)

tri_fusion([7, 4, 2, 1, 8, 5, 6, 3])

Exercice 1 :
1)

def plus_proche_voisin(t, cible):
dmin = distance(t[0], cible)
idx_ppv = 0
n = len(t)
for idx in range(1, n)
if distance(t[idx]) < dmin
dmin = distance(t[idx])
idx_ppv = idx
return idx_ppv

2) 0(n)
3)

a) On garde le résultat dans une variable et on réutilise cette
variable. Exemple : d = distance(obj, cible)

b) Cela permet de savoir que le plus proche voisin ayant la plus
grande distance est toujours en premiére position de la liste et
de ne pas a avoir a le chercher dans la liste a chaque fois.

c)

def insertion(kppv, idx, d)
for i in range(len(kppv)):
if kppv[i][1] < d:
kppv.insert(i, (idx, d))
return
kppv.append((idx, d))

