
Exercice 4

1)
a) O(nlog(n))
b) Tri selection/insertion/bulle. Cout O(n²)

2)
[7, 4, 2, 1, 8, 5, 6, 3]
[7, 4, 2, 1]
[7, 4]
[2, 1]
[8, 5, 6, 3]
[8, 5]
[6, 3]

3) 4)
def moitie_droite(L):
 return L[len(L)//2:]

def moitie_gauche(L):
 return L[:len(L)//2]

def fusion(L1, L2):
 L = []
 n1 = len(L1)
 n2 = len(L2)
 i1 = 0
 i2 = 0
 while i1 < n1 or i2 < n2:
 if i1 >= n1:
 L.append(L2[i2])
 i2 = i2 + 1
 elif i2 >= n2:
 L.append(L1[i1])
 i1 = i1 + 1
 else:
 e1 = L1[i1]
 e2 = L2[i2]
 if e1 < e2:
 L.append(e1)
 i1 = i1 + 1
 else:
 L.append(e2)
 i2 = i2 + 1
 return L

def tri_fusion(L):
 n = len(L)
 if n <= 1:
 return L
 print(L)
 mg = moitie_gauche(L)
 md = moitie_droite(L)
 L1 = tri_fusion(mg)
 L2 = tri_fusion(md)
 return fusion(L1, L2)

tri_fusion([7, 4, 2, 1, 8, 5, 6, 3])

Exercice 1 :

1)

def plus_proche_voisin(t, cible):
 dmin = distance(t[0], cible)
 idx_ppv = 0
 n = len(t)
 for idx in range(1, n) :
 if distance(t[idx]) < dmin :
 dmin = distance(t[idx])
 idx_ppv = idx
 return idx_ppv

2) O(n)

3)

a) On garde le résultat dans une variable et on réutilise cette
variable. Exemple : d = distance(obj, cible)

b) Cela permet de savoir que le plus proche voisin ayant la plus
grande distance est toujours en première position de la liste et
de ne pas à avoir à le chercher dans la liste à chaque fois.

c)

def insertion(kppv, idx, d) :
 for i in range(len(kppv)):
 if kppv[i][1] < d:
 kppv.insert(i, (idx, d))
 return
 kppv.append((idx, d))

