La fonction tri_insertion suivante prend en argument un tableau tab (type list) et
trie ce tableau en utilisant la méthode du tri par insertion. Compléter cette fonction pour

EXERCICE 2 (10 points)

qu’elle réponde a la spécification demandée.

On rappelle le principe du tri par insertion : on considere les éléments a trier un par un, le
premier élément constituant, a lui tout seul, un tableau trié de longueur 1. On range ensuite
le second élément pour constituer un tableau trié de longueur 2, puis on range le troisieme

élément pour avoir un tableau trié de longueur 3 et ainsi de suite...

A chaque étape, le premier élément du sous-tableau non trié est placé dans le sous-tableau

des éléments déja triés de sorte que ce sous-tableau demeure trié.

Le principe du tri par insertion est donc d’insérer a la n-iéme itération, le n-ieme élément a

la bonne place.

def tri_

insertion(tab):

"'"'"Trie le tableau tab par ordre croissant
en appliquant l'algorithme de tri par insertion'''

n:
for

Exemple:

>>> tab

>>> tri_

>>> tab
[9, 12,

len(tab)
i 1in range(l, n):
valeur_insertion =
la variable j sert a déterminer
ou placer la valeur a ranger
jo= ...
tant qu'on n'a pas trouvé la place de 1'élément a
insérer on décale les valeurs du tableau vers la droite
while j > ... and valeur_insertion < tab[...]:
tab[j] = tab[j-1]

j=.
tab[j] =

= [98, 12, 104, 23, 131, 9]
insertion(tab)

23, 98, 104, 131]

3/3

EXERCICE 2 (10 points)

On consideére 'algorithme de tri de tableau suivant : a chaque étape, on parcourt le sous-
tableau des éléments non rangés et on place le plus petit élément en premiere position de
ce sous-tableau.

Exemple avec le tableau: t = [41, 55, 21, 18, 12, 6, 25]
« Etape 1: on parcourt tous les éléments du tableau, on permute le plus petit élément
avec le premier.
Le tableau devientt = [6, 55, 21, 18, 12, 41, 25]

. Etape 2 : on parcourt tous les éléments sauf le premier, on permute le plus petit
élément trouvé avec le second.

Le tableau devient: t = [6, 12, 21, 18, 55, 41, 25]

Et ainsi de suite.
Le programme ci-dessous implémente cet algorithme.

def echange(tab, i, j):
"!""Echange les éléments d'indice 1 et j dans le tableau tab.'''
temp =
tab[i]
tab[j]

def tri_selection(tab):

"'"'"Trie le tableau tab dans l'ordre croissant
par la méthode du tri par sélection.'''
N = len(tab)
for k in range(...):

imin = .

for i 1in range(..., N):

if tab[i] < ...:
imin = 1
echange(tab, ..., ...)

Compléter ce code de facon a obtenir :

>>> tab = [41, 55, 21, 18, 12, 6, 25]
>>> tri_selection(tab)

>>> tab

[6, 12, 18, 21, 25, 41, 55]

3/3

EXERCICE 2 (10 points)

La fonction tri_bulles prend en parameétre un tableau tab d’entiers (type list) et le
modifie pour le trier par ordre croissant.

Le tri a bulles est un tri en place qui commence par placer le plus grand élément en derniere
position en parcourant le tableau de gauche a droite et en échangeant au passage les élé-
ments voisins mal ordonnés (si la valeur de ’élément d’indice i a une valeur strictement
supérieure a celle de l'indice i + 1, ils sont échangés). Le tri place ensuite en avant-
derniére position le plus grand élément du tableau privé de son dernier élément en procé-
dant encore a des échanges d’éléments voisins. Ce principe est répété jusqu’a placer le
minimum en premiere position.

Exemple: pour trier le tableau [7, 9, 4, 3]:

« premiere étape : 7 et 9 ne sont pas échangés, puis 9 et 4 sont échangés, puis 9 et 3
sont échangés, le tableau estalors [7, 4, 3, 9]

« deuxiéme étape: 7 et 4 sont échangés, puis 7 et 3 sont échangés, le tableau est alors
(4, 3, 7, 9]

« troisieme étape: 4 et 3 sont échangés, le tableau estalors [3, 4, 7, 9]

Compléter le code Python ci-dessous qui implémente la fonction tri_bulles.

def echange(tab, i, j):
'"'"'"Echange les éléments d'indice 1 et j dans le tableau tab.'''
temp =
tab[i]
tab[j]

def tri_bulles(tab):
"'"'"Trie le tableau tab dans l'ordre croissant
par la méthode du tri a bulles.'''
n = len(tab)
for i in range(...):
for j 1in range(...):
if ... > L.
echange(tab, j, ...)

Exemples:

>>> tab = []

>>> tri_bulles(tab)

>>> tab

[]

>>> tab2 = [9, 3, 7, 2, 3, 1, 6]
>>> tri_bulles(tab2)
>>> tab2

(1, 2, 3, 3, 6, 7, 9]
>>> tab3 = [9, 7, 4, 3]
>>> tri_bulles(tab3)
>>> tab3

[3, 4, 7, 9]

3/3

Exercice 2 (4 points)
Cet exercice porte sur la programmation et les algorithmes de tri.

Au service des urgences d'un hopital, le triage consiste a classifier ou a déterminer le
degré de priorité des patients. Il implique une réévaluation périodique et systématique de
ce degré pour les patients en attente.

Dans le systéme informatique, chaque patient obtient un identifiant & son arrivée en salle
d’attente ainsi qu’une priorité dépendant de la gravité potentielle de ses symptémes.

Le patient ayant la priorité 1 est le premier qui doit étre pris en charge et deux patients ne
peuvent pas avoir la méme priorité.

Pour modéliser la salle d’attente en Python, chaque patient est représenté par un tuple
composé de son identifiant d’arrivée et de sa priorité. Ainsi, la variable attente
implémentée ci-dessous représente une salle d’attente de trois patients ou, a cet instant,
le patient identifié 47 sera le premier a étre pris en charge, puis le patient 45 et finalement
le patient 49.

attente = [(45,2),(47,1),(49,3)]

1. Ecrire l'instruction qui permet d’insérer dans la liste attente, définie ci-dessus, un
nouveau patient identifié 50 avec une priorité de 4.

2. Pour optimiser le traitement informatisé de prise en charge des patients, on veut que la
salle d’attente soit ordonnée par priorité. On utilise alors la fonction tri (attente)
donnée ci-dessous qui renvoie la salle d’attente triée dans 'ordre croissant des
priorités.

def tri(attente)
for i in range(len(attente))
pos = i
mini = attente[i] [1]
for j in range (i, len(attente))
if attente[j]l [1] < mini
pos = jJ
mini = attentel[j] [1]
temp = attente[i]
attente[i]l= attente[pos]
attente[pos] = temp

a. Quel algorithme de tri est ici implémenté ?

v le tri fusion
4 le tri par insertion
v le tri par sélection
v le tri rapide

b. Quelle est la complexité en temps des tris par insertion et par sélection ?
v constante : 0(1)
v logarithmique : 0 (log n)
v linéaire : O(n)
v quadratique : 0(n?)

22-NSIJ1AS1 Page 4/14

